Rsyncif E 2=

vvvvv
‘‘‘‘‘
.......
||||||

L

R#HEZEXREZE BFEERKRX

o Rsync IES{EOMEEETT T IIEE
Sreync(m) = Sbase * (1 — m) + Sgelta * ™
Heh:

* Shase BFRIEHIREI G EIRE,
o Sgela SIEBHRESHIESE,
o m 2EHH, EE 01,
o BENEEGHEDERE—ER Sirect.

FEiniEET:

Shase = 50MB/s, Sgelta &~ 10 MB/s.

Transfer Speed (MB/s)

50

40+

30

10

Transfer Speed vs Modification Ratio (Rsync vs Direct)

—— Rsync Incremental Transfer
---- Direct Transfer Speed

Modification Ratio (%)

80 100

A% o) /T

» delta (encoding)change algorithm
* rolling checksum algorithm
* The rsync algorithm
* 1. quick check (size, always checksum, mtime)

« 2. rolling checksum in send files()
3. 3-level search in send files()

« Server, Client and Daemon - sender & receiver & generator
» send_files()/recv_files()/generate_files()

RHETEXNE BfE&EERXX

am_server

JR 55 45

\/I/\

v

am_server

or

am_daemon

A 4

daemon_main()

\/\

False vs False

v

v

do_server_sender()

do_server_recv()

v

v

send_files()

do_recv()

A

receive_sums()

—

match_sums()

v

hash_search()

v

v

am_receiver

am_generator

v

v

recv_files()

generate_files()

v

v

receive_data()

generate_and_send
_sums()

A 4

start_client()

v

client_run()

am_sender Or
send_files() do_recv()

1. quick_check_ok()

* File Size: If the sizes of the source andestination files differ, the
file 1Is marked for synchronization.

* Always checksum: Optionally, a full checksum of the file can be
calculated for validation.

* Modification time (mtime): If the last modification times of the
files differ, rsync flags the file for further checks or
synchronization.

sum functions

receive_sums(): called in send_files() to receive checksums from receiver

match_sums(): called in send_files() to match checksums from receiver

generate_and_send_sums(): called in generate_filesQ) in receiver’s side

sum_update()
* get_checksum1()

get_checksum?2()

sum_end()

sum_init()

2. match_sums()

* Files are divided into fixed-size blocks

* A rolling checksum is calculated for each block in the source file.
This checksum allows quick recalculations when the comparison
window moves by one byte, using a formula that updates the
checksum incrementally rather than recomputing It from scratch.

* The destination file's blocks have both a rolling (weak) checksum
and a strong checksum (e.g., MDb5) stored. The weak checksum
quickly identifies potential matches, and the strong checksum
confirms these matches.

get _checksuml()/get _checksum?2()

-_—

The weak checksum algorithm we used in our implementation was inspired by Mark Adler's adler-32 checksum. Our checksum is defined by

!
a(k,2) = () Xi) mod M
i=k

get_checksuml

!
Bk,2) = ()0 — i+ 1)Xi) mod M

=k

s(k.0) = a(k,l) + 216 b(k.])

where s(k,]) is the rolling checksum of the bytes Xz ... X;. For simplicity and speed, we use M= 216,

Hash check not hitted

null_hash:

backup = offset - last_match);

backup < @
backup = @;

Incremental Rolling Checksum Formula
For a block of size k: more = offset + k < len;

map = *)map_ptr(buf, offset - backup, k + more + backup
1. Checksum Initialization: j

+ backup;
s1 2] +

s2 - map[@]+

k
s1 =" blockli]
i=1

k
s2=") (k—i+1)-blockli]
i=1
2. Rolling Update: When the window shifts one byte:
* Remove the first byte (map[@]) and add the new byte (map[k] if available):
$lpew = slgq — block[0] + block|[k]

§20 = 52-:1(1 —k- bluc‘k[ﬂ: + 51w if (backup >= s->blength+ ZE && end-offset >

matched(f, s, buf, offset - s->blength, -2);
++offset < end);

ak + 1,1 +1) = (a(k,1) = Xz + Xpp1) mod M

b(k + 1,1 + 1) = (b(k,1) — (I — k + 1)Xz +a(k + 1,1 + 1)) mod M

Thus the checksum can be calculated for blocks of length S at all possible offsets within a file in a ““rolling" fashion, with very little computation at each point

3. hash_search()

* Level 1: 16-bit hash table:

* A hash of the rolling checksum is calculated and used to index a hash
table of block checksums.

* The hash table reduces the number of blocks to consider.

* Level 2: Weak checksum comparison:
* |f the hash table indicates a match, the weak checksum of the current
source block is compared to the destination’s checksum.
* Level 3: Strong checksum validation:

* For potential matches, the strong checksum (e.g., MD5) confirms the
block match with near certainty.

sum = (s1 & exffff) | (s2 << 16);
hash_entry = (sum);
((i = hash_table[hash_entry]) < @)
goto null_hash;
prev = &hash_table[hash_entry];

hash_hits++;

11

(updating basis file && s->sums[i].offset < offset
&& !(s->sums[i].flags &) {
*prev = s->sums[i].chain;

3
J

prev = &s->sums[i]

if (sum !-=

(s->blength, len-offset);
>sums[i].len)

DELTASUM, 3)) {

rprintf
“F m t %s i=%1d sum=%@8x\n",

big_num(offset), i, sum);

(!done_csum2) {

map = *)map_ptr(buf,offset,1);
get_checksum2 *)map,1,sum2);
done_csum2 = 1;

(memcmp (Sum2, s, i), s->s2length) !
false_alarms++;

FileDst

S3tied0
384eHn

Bfagin 3360
WgTn B4eT0
Chunk #1 Chunk#2 Chunk#3

Chunk®4 Chunk#5

sstasdn
— 3348
Chunk #6

. FileDst
FileSrc Rolling Checksum Hash Table
L
) 53esH0
& Chunk #3
336840
B4
Chunk #5
—>_1 |

EUERB IS \ Shay
& Chunk #1
336aeH0
B4sn
Chunk 24
\\ 333810
itk

[[| I | =

Chunk #5

Chunk #1

Chunk #2 Chunk #4

Multiple hits in hash table

(updating_basis_fil

aligned_offset < offset
aligned offset += s->blength;
aligned i++;

offset aligned_offset
|| (sum © && 1 == s->blength && aligned offset + 1 <= len)
&& aligned i < s->count
i i aligned i
if (sum != s->sums[aligned i].suml

if (i != want_i && want_i < s->count
'updating_basis file || s-»sums[want_i].offset »= offset
s->sums|[want_i].flags &
s->sums[want_i].suml

&& memcmp(sum2, s, want_i), s->s2

Il 1! >sums[aligned i
|| memcmp(sum2, aligned i),
o check_want_i;
want_1i;

i = aligned I

7
offset I= aligned_offset want_i =i+ 1;
matched(f,s,buf,offset,i);
offset += s->sums[i].len - 1;
i YMIN(s->blength, len-offset);
*)map_ptr(buf, offset, k);
sum = get_checksuml(ar *)map, k);
sum & FF;
sum >> 16;

backup = (aligned offset - last_match);
(backup < @)
backup
map = (ap_ptr(buf, aligned offset - backup, 1 + backup)

es++;

+ backup;
sum = get_checksumi(*)map, 1);
(sum != s->sums[i].suml)
check_want_i;
get_checksum2((char *)map, 1, sum2);
(memcmp (sum2, t(s, i), s->s2length) != 0)

check_want_i;

s->sums[i].chain) >= 0);

offset = aligned offset;

s->sums[i].flags |=
want_i =

send_token(£ tol

n, toklen)
do_compression

simple_send_token(f, token, buf, offset, n);

In recv_data():
: while ((i = recv_token(f_in, &data)) '= 0)}{}

matched(send_zstd_token(f, token, buf, offset, n);

simple_recv_token(f, **data)

case
residue;

send_compressed_token(f, token, buf, offset, n);
. *buf;

3

n;

!buf
buf =
3
residue == @

read int(f);

J
send token(f, i, buf, last match, n, 1 < @ 2 @ : s->sums[i].len);
data_transfer += n;

i»>oe t | Ex T
stats.matched_data simple_send_token(token, residue = i
n += s->sums[i].le

len *data = buf;
n = I ,residue);
residue -= n;
read_buf(f,buf,n);

n;

j<n; j+ hile (len < n
nl = nt = (I , n-len);
sum_update (map_ptr(write_int(f, n
write_buf(f, map_ptr(buf, offset+len, n1), ni);
len += n1;

i»>e
last_match = offset

last_match = offset if (token -2
1 write int(f, -(token+1));

1

buf && TE(PRC i
show_progress(last_match, buf->file_size);

show_prog|

allowed 1ull
maybe_send_keepal ive(time(

A% o) /T

» delta (encoding)change algorithm
* rolling checksum algorithm
* The rsync algorithm
* 1. quick check (size, always checksum, mtime)

« 2. rolling checksum in send files()
3. 3-level search in send files()

« Server, Client and Daemon - sender & receiver & generator
» send_files()/recv_files()/generate_files()

RHETEXNE BfE&EERXX

55!

THANKS

»»»»»
‘‘‘‘‘
,,,,,,,
||||||

L

RHEEXNE BfF&EERXX

